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INTRODUCTION

In this paper we discuss the question of existence and uniqueness of
generalized splines on Rl for the linear differential operator L = D(D - ex).
We view the problem from an algebraic standpoint, and, utilizing the theory
of doubly infinite Toeplitz matrices, prove an existence and uniqueness
theorem of broad application. The behavior of the splines is also considered
for the limiting cases IX -- 0 and ex -- 00.

Hyperbolic splines of this type have been considered by Schweikert [7]
as a means of obtaining a more acceptable "faired" curve to a given set of
interpolation data in cases where the cubic spline introduces what he calls
extraneous inflection points-points at which the cubic spline interpolant
changes the direction of concavity but at which the draftsman's [aired curve
would contain no such reversal. He shows that the assumptions leading
to cubic spline interpolation as the mathematical model of what a draftsman
actually does in fairing a curve do not accurately account for the process and
that the spline in tension (hyperbolic spline) better represents the draftsman's
techniques.

The theory of cubic and higher-order polynomial spline functions on the
real line has been studied by Schoenberg [5], [6], Ahlberg, Nilson, and.
Walsh [3], and Ahlberg and Nilson [2] among others. For splines on finite
intervals the theory is extensive and there are two basic approaches-the
algebraic and what Ahlberg, Nilson, and Walsh [4] call the int:-insic. The
intrinsic approach is used to obtain existence, uniqueness, and convergence
results for generalized splines on finite intervals. It entails establishing
certain integral relations and inequalities satisfied by generalized spline
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functions, such as the minimum norm property and the best approximation
property [4]. It may be possible to extend this approach to apply to
generalized splines on the real line; however, we utilize, instead, the extension
of the algebraic approach to infinite intervals.

1. EXISTENCE AND UNIQUENESS

Let us consider the linear differential operator [7]

L = D(D - a),

and without loss of generality, as will be seen momentarily, let us take a > 0.
Let LI = {Xj = }I:} = 0, ±1, ±2,...}; i.e., on R\ LI is the uniform mesh of
size I > 0. We call Six) a simple hyperbolic spline on Rl for the uniform
mesh LI if (i) on each mesh interval [x j , XHd, Six) satisfies L*LSix) = 0,
and (ii) Six) is C2(Rl). Furthermore, Six) is a simple hyperbolic spline
of interpolation if, in addition to (i) and (ii), (iii) Six;) = yj,} = 0, ±1,
±2,... for prescribed interpolation data {yJ.

On [Xj, X;+l], Six) is a linear combination of

1, x, sinh ax, cosh ax

since L*L = D2(D2 - ( 2). (Note that L = D(D + a), a > 0, results in the
same differential equation being satisfied on any mesh interval, for again
L *L = D2(D2 - ( 2». Writing

on [Xj, XHl], we wish to find c/, i = 1,...,4, } = 0, ±1, ±2, ... so that
(ii) and (iii) are satisfied. We proceed in the same manner as for splines on
finite intervals. Letting M j = S~(x;) be the unknown second derivative of
our spline of interpolation at the mesh points, we require for all}

cl ; + C2;Xj + c3; sinh aXj + c4; cosh ax) = Yj ,

cl ; + C/Xi+l + c3' sinh (XXj+l + c./ cosh aXj+l = Yi+l ,

a 2c3' sinh ax) + a 2cJ) cosh ax, = M j ,

a 2c3' sinh aX;+l + a 2c4
i cosh aXHl = MHI ,

(Ll)

and so we get the following representation for Six) on [x" Xi+l] in terms



SIMPLE HYPERBOLIC SPLINES 191

of the known interpolation data )'i, YH1 and the unknown spline second
derivatives M j , k[i+1 :

, t' X1+1 - X ') (' x - x; )' M j

Six) = y; \. I ,+ YH1 I - LX" sinh oj

. [( X i +1
/
- x ) sinh exl - sinh a.(Xi+l - x)]

M i -l-1 [( X - Xj) . hi' 1 ( ,,]
- ,ex" sinh exl I, sm .:x - sm 1 exx - Xi) • (1.2)

By the use of this representation it is clear that S,:,(Xj) = )'i and S..1 and S~

are continuous at Xj for all j. The requirement that S,,/ be continuous at Xj

leads to a condition on M j ; namely,

M. +_ 2 ((XI cosh (XI - sinh (XI)' kI. I 11",
)-1 sinh (XI _ exl J T '1)+1

= «(Xl? sinh (XI ( YH1 - 2Yj + )'j-1 )'

sinh exl - .:xl 12

for allj. In matrix form this is

rr. .

(1.3)

M_1 (cxl)2 sinh exl
d_1

},£o
sinh exl - 0../ do (1.4)

lJ,11 ell

where

:xl cosh (XI - sinh exl"{} = 1](exl) = --;-:-----c;----;---­

sinh rx.l - od
and Y' 2J"-'

d , = j~1 - - '.I T J'.i-l
J /2

The matrix in (1.4) is a doubly infinite Toeplitz matrix. To solve (1.4)
we must ensure that the infinite sums on the left-hand side are convergent
(in our case this is obvious since all terms but three are zero); \ve must find
a doubly infinite matrix, the inverse of the one in (1.4), with which to multiply
both sides in order to obtain on the left a doubly infinite identity matrix
multiplying the vector of 111Js; and then we must ensure that the inverse
matrix, when applied to the right-hand side, yields convergent infinite sums.
To this end we quote the following basic result of the theory of Toeplitz
matrices.
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[

: .., ·C~ 'C~l' 'C~2' :]

Teb = ... C1 Co C-1 .

... C2 C1 Co .

. . . ..

and define eP(B) = I::=-ro cn ein8
• If the {c n} are such that eP is a bounded

function, then we have

THEOREM 1.1. Teb is invertible if IN is essentially bounded. IfTil exists, it
satisfies Til = Tl/eb where Tl/eb is the Toeplitz matrix defined by the sequence
ofFourier coefficients of IN [8].

In our case eP(B) = 2YJ + ei8 + e-i8 = 2YJ + 2 cos B, and so IN is essen­
tially bounded since elementary computations reveal YJ > 2 for ex > O.
The Fourier coefficients of IN are given by

1 f71 e-in8 dB
an = 27T -71 2(cos B+ YJ)

(1.6)

and the change of variables B ---+ -B shows that a_n = an' Since IN is real,
the Fourier coefficients an are real and, therefore, we have

_ _ _1_ J'1r cos nB dB _ 1 (. 2 _ 1)1/2 _ )n
a_ n - an - 27T -1r 2(cos B + YJ) - 2(YJ2 _ 1)1/2 (YJ Tj •

Defining fL = (YJ2 - 1)1/2 - Tj, we have

(1.7)

(exl? sinh exl
... fL 1 fL fL2 fL3

... fL2 fL 1 fL fL2

... fL3 fL2 fL 1 fL

(1.8)

The calculation of the 111/s from (1.8) uniquely determines the splines of
interpolation; however, unlike the finite interval case, the invertibiJity of the
Toeplitz matrix in (104) does not suffice to guarantee the existence of the M/s.
This is due to the fact that the inverse does not have a finite number of
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Mi =

for all j,

nonzero entries in any row. Denoting by LlYj the second difference
YJ--l - 2)'J + )'.i-1 , we have in general, from (1.8),

Cl.2 sinh 0.:1 '
2(ry2 - 1)1/2(sinh exl _ exl) rAYJ + fL(LlYJI-l -j- LlYH)

+ fL2(LlYJ+2 + LlYJ-2) + ... + fL"(LlYi+n + Ll)'J-n) + ...J
n,2 sinh exl ,

2(7J2 - 1)1/2(sinh 0;/- od) [2Y;({.l - 1) + (YJ+! + J'i-l)

. (El., - 1)2 + (Y1+2 + YJ-2){JL - 1)2 fL + ...
+ (Yi.n + YJ~n)(fL - 1)2 fL,,-1 + ...J

ct2 sinhod'(fL-l) (? . 1)~( \ -1\
= 2f q 1)1 '2( - 'h I ') -YJ + (fL - L, )'J.Ln + )'J-n) . IJ,.,,- ).

,,7]- - " Sill ex -:Xl "~1' .

(1.9)

The existence of the spline of interpolation is predicated on the existence of
the AI/s. And so, we have

THEOREM 1.2. A necessary and sufficient condition for the existence and
uniqueness of the simple hyperbolic spline of interpolation on Rl with intei"­
polalion data {Yj} is that

ex:

"' (J' + l' )' '11-1'-' i+n "' 'j-n fL
n=l

exists for all j; where, we recall, fL = (7J2 - 1)1/2 - 7J and -1 < ,V. < O.

In fact it can readily be shown that 31 / 2 - 2 ~ fL < 0 since 2 ~ 7J < if)

for ex ? O. Certainly if

lim I )'1+11+1 + )'J-("+1) i < _1_
J!-'>OO I Y1+n .L Yj-n I I fL I

then, by the ratio test, the required sums will exist, For example, if there
exists a K such that for k > K, Y±l: > 0 and Y±(k+l) < Y±l:((l/i fL I) - E) for
a small positive number E; i.e., sufficiently far out the interpolation data
does not grow any faster than by a factor of 111 fL [, then the required sums
will exist. For,

I
' ,

YJ+n+l + Yi-n-l!
I YJ.Ln + )'j-" I

Y1+n-1 + YJ-n-1
)'1+n + Yi+n

1
=-~-E

I fL I
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and so
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11'm 1 YHn+1 + Yi-n-l I 1 1
I + I :;:;;-III.j - E <-1"'1 .ft->XJ YJ+ft Yi-n ,.- r

In this case for 11- = 31/2 - 2 (ex = 0), we would only require

Y±(k+1) < 3.7Y±k

for k > K and, for increasing ex, 1 11- I decreases and the allowed growth
factor 1/111- [ which would still ensure convergence increases without limit.

It is interesting to note that with bounded interpolation data, IYi I < B
for allj, the number of terms in the sums required for a given accuracy in the
result decreases with increasing ex; for

and 1 11- [ ---+ 0 as ex ---+ Cf.).

2. ASYMPTOTIC BEHAVIOR

A very useful spline is constructed if we take as interpolation data

Yo = 1, Yi = 0, j = ±1, ±2,.... (2.1)

j = 1,2,...

We call such a spline a cardinal simple hyperbolic spline on Rl. Its importance
stems from the fact that splines with arbitrary interpolation data can be
expressed as linear combinations of cardinal splines, and that the cardinal
spline centered at m (i.e., Ym = 1, Yi = 0, j =1= m) is just a translate of the
cardinal spline centered at the origin (see Section 3).

From (1.8) with data (2.1), we have

ex2 sinh exl ( _ 1)
(7]2 - 1)1/2(sinh exl - exl) 11-

ex2sinh exl ( _ 1)2 H
2(7]2 - 1)l/2(sinh exl - ex/) 11- 11-,

and finally from (1.2), noting that Si-x) = Six), we get on [0, I],

S ( ) - I - x 1 I( 1) [X . hi' h . ]
Ll X - -1- + (TJ2 _ 1)1/2(sinh exl- exl) I TJ + 11- T sm ex - sm ax

+ (1 -11-) [I ~ x sinh exl- sinh ex(l- x)]!
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and on [jl, (j + 1)/],

'"' / _) (1] + 1) p) \ [U + 1) I - x ; h I
,) ..1lx = (9 1)1 '0/ . h I I) j I s~n 01,7]- - I-,sm ex - ex \

195

- sinh Ci(U + 1) 1- x)] + fJ, [X -; jl sinh ,xl - sinh (XCx - jl)Jl.
(2.2)

Since -1 < fJ, < 0, the factor fJ,j gives S;J damped oscillatory behavior,
as expected from the cubic case.

We now investigate the behavior of cardinal simple hyperbolic splines
in the limiting cases ex ~°and ex -)- CD.

THEOREM 2.1. As ex ~ 0, the cardinal simple hyperbolic spline
(L = D(D - ex») converges to the cardinal cubic spline (L = D2) on Rl.

Proof Fix 1and let Ci. ~ 0. On [0, l] with x = pI, 0 ~ p ~ 1, we have

S (1) (I ) + 1 I( + 1 f 2 1)1,'2';J P = \ - P (2 1)1 '2( . 1 I I' l 7] - \. 1") - ,)1] - I sm 1 ex - ex ) .

. [(1 - p) sinh 011 - sinh 01/(1 - p)] - (Y) -+- 1)(7] - (r/ - 1)1/2)

. [p sinh cd - sinh exlp]}. (2.3)

As Ci ~ 0, Y)(rxl) ~ 2 and so, by repeated application of L'Hopital's rule to
(2.3), we find that

(2.4.1 )

Similarly, on [jl, (j + 1)1] with x =.il + pI, °~ p ~ 1, we find

Equations (2.4.1) and (2.4.2) are precisely the expressions for the cardinal
cubic spline on Rl [1].

In the other limiting case, letting 01 ~ X) we have the following expressions
for the asymptotic behavior of various quantities in (2.2):

LEMMA 2.2.

. 1 '
7)(CiI) = ex/- 1 + ol---..;;y-) for E < 1

\ e .

(7)2 - 1)1/2 - 7) = - 2(01/
1
_ 1) --i- 0 ( ~I )
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, 1
sinh (XI - ad = eo. lj2 - (XI + 0 (~)

(l - p) sinh (XI - sinh (XI(l - p)

1
exl ' 1 '
-(1 - p - e-o.1P) + 0 (-)

= 2 or.!

°
p sinh (XI - sinh (Xlp

l
'~ (p - e-~l(l-p) + 0 (_1)

= 2 exl

°
for °<p < 1

for p = 0, 1

as ex -+ 00.

Proof These are all straightforward calculations. The second comes from
the first and a Taylor expansion of the square root. The last three result from
writing sinh x as (eX - e-X)j2. We show the first.

I YJ(ol.!) - (XI + 1 I eEol

= I exl cosh (Xl - sinh exl - (Xl sinh (Xl + (X212 + sinh exl - exl Ieml
sinh (XI - exl

exl(e-exl + (XI - 1) eE~l

(e~l - e-,l - 2exl)j2

(al)2 eEa1
-+ -+ 2(exl)2 e-(I-Ehl -+ °

ealj2

as ex -+ CD.

This gives us

THEOREM 2.3. As ex -+ 00, the cardinal simple hyperbolic spline converges
to the cardinal polygonal line approximation on RI.

Proof From (2.2) and the previous lemma, we have on [0, I],

_ 1 \~ _ _ (_1)(eOlp)~
Sfj(pl) -+ (1 p) + exl(e~lj2) i 2 (1 p) ctl 2(X1 2 \

-+ (1 - p) + ~ (1 - P - E) -+ (1 - p) as ex -+ 00,
exl 2

and on [jl, (j + 1)1],

S (( . + ) I) -+ ( __1_'); ( I) ( (eo lj2)(1 - p) - (eo. lpj4(X/) )
LI ] P 2exl , ex , exl(eexlj2)

-+ (- _1_);(1 - p _ ~) -+ ° as ex -+ 00.
2(X1, 2exl
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The cardinal polygonal line approximation referred to in the theorem above
results from connecting the interpolation data (2.1) by straight line segments.

Schweikert notes Theorem 2.3 in his thesis [7] without proof in the case
of finite intervals. Intuitively, this result is not surprising, because for large
values of ex the dominant term in L = D(D - ex) is -c;.D and the splines
arising from L *L = Oi.D( - Oi.D) = - c;.2D2 are continuous piecewise straight
lines with discontinuous first derivatives at the mesh points. In some cases,
as Schweikert has shown, the ability to choose Cl over such a wide range is
helpful in making the approximating spline curve a more visually acceptable
interpolant.

3. ApPLICATION TO FINITE INTERVALS

Two basic approaches are available for the calculation of hyperbolic
splines on finite intervals-the direct application of equations (1.2), (1.3)
for j = 1,... , N - I with appropriate boundary conditions at j = 0, N,
[4], [7], or the utilization of the cardinal splines determined by (2.1) as we now
consider. This approach is motivated by [1].

On the interval [0, NI], assume interpolation data {J'j}~:o to be given.
Denote by C;(x) the cardinal simple hyperbolic spline centered at} (a translate
of the spline defined by (2.2». Let

N

Six) = L y;C;(x) + aC_I(x) + bCN-I(x),
j~O

(3.1)

Then, surely, Sixj) = YJ, j = 0,... , Nand S{j is a spline of interpolation
to {yiJ on [0, N/].

Additional end conditions are required to specify the spline uniquely.
Let us take them to be the values of the slopes at the endpoints. S<3'(O) and
S{j'(NI). (Other choices are possible.) It was to allow for these t\"/o parameters
that the additional cardinal splines, C_I(x) and CS-:-1(x), were induded in the
representation (3.1).

Differentiation of (3.1) and evaluation of the result at 0, NI yields

N

aCI(O) + bC;"'+l(O) = S{j'(O) - I y;C/CO)
i=O

(3.2)
N

aCI(Nl) + bCN+l(Nl) = S,/(NI) - I JjC/(N!).
j~O

So Six). interpolating to {yiJj:o and having prescribed slopes at the end-
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points, is given by (3.1) with a, b to be found from (3.2). In order to solve
(3.2) for a, b it is required only that

(3.3)

have an inverse.

LEMMA 3.1. The matrix (3.3) is invertible.

Proof Differentiation of (2.2) gives

CN+l(O) = (7] + 1) ,uN+!

C'-I(NI) = -(7] + 1) ,uN+!

CN+l(Nl) = -(7) + 1),u.

So (3.3) becomes

which is clearly invertible. In fact, for reasonably large N, (3.3) approximates

since I ,u I ~ 2 - 31 / 2 < .3, eliminating the need to actually invert (3.3) to
solve for a, b.
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